GCE Physics - PH2

Mark Scheme - January 2013

Question			Marking details	Marks Available	
1	(a)	(i)		[1]	
		(ii)	$v = 3.0 \ge 5.0 (1) \ [\text{cm s}^{-1}] \text{ or by implication. Full ecf on } \lambda$ $t = \frac{d}{v} \text{ applied } (1)$ $t = 0.70 \le (\text{ecf on } \lambda) (1)$ OR $d = \frac{10.5}{3.0} (1)$	[3]	
			T = 0.20 [s] (1) [t = 0.20x $\frac{10.5}{3.0}$] t = 0.70 [s] (1)		
		(iii)	B in phase, C not in phase (in antiphase not acceptable), D in phase - irrespective of explanations. (1) Correct answer and understandable explanation or 'in phase' explained, for one of B, C or D. (1) Correct answer and understandable explanation for another of B, C, or D. (1)	[3]	
	(b)	(i) (ii)	Diffraction Rounded and (almost) semicircular (Accept gaps of $\leq 3 \text{ mm}$) (1) λ constant (1) (within about 30%)	[1] [2]	
			accept mull gegs		
		(iii)	 Any 2 x (1) from: λ decreased [No penalty for (say) 'halved'] less spreading side beams 	[2]	
			Question 1 total	[12]	

Question			Marking details	Marks Available
2	(a)	(i)	Constructive interference at P / waves arrive in phase at P (1) Same path length from sources / $AP = BP$ / no path difference (1)	[2]
		(ii)	52.2 <u>and</u> 50.2 (1) $\lambda = 2.0$ [cm] (1) ecf on slips OR 56.8 <u>and</u> 52.8 (1) $\lambda = 2.0$ [cm] (1) ecf on slips	[2]
		(iii) (I)	$\lambda = \frac{10.0x10.0}{50} (1) = 2.0 \text{ cm} (1) \text{ UNIT}$ OR $\lambda = \frac{10.0x12.0}{50} (1) = 2.4 \text{ cm} (1) \text{ UNIT}$	[2]
		(II)	AB or SP not very small compared with D OR maxima not evenly spaced	[1]
	(b)	(i)	$d = 2.0 \times 10^{-6} \text{ [m] (1) or by implication}$ $3\lambda = d^* \sin 72.3^\circ (1)$ $[d^* \text{ needs to be related to } d, \text{ even } 5.0 \times 10^5 \text{ would do}]$ $\lambda = 6.35 \times 10^{-7} \text{ [m] (1)}$	
		(ii)	Up to 3^{rd} order visible, $1 + 3x2$ beams seen OR diagram (1)	[3]
			$\frac{d}{\lambda} = 3.15 (1)$ so only 3 orders (1) not a freestanding mark OR $\frac{4\lambda}{d} > 1 (1)$ so only 3 orders (1) not a freestanding mark	[3]
			Question 2 total	[13]

Question			Marking details	Marks Available	
3.	(a)	(i)	(I) normal to surface of hlock at P bands surface normal to normal to hlock at P	[2]	
			(II) 1.58 sin25° = [1.00] sin <i>a</i> (1) or equivalent or by implication $a = 42^{\circ}$ (1)	[2]	
		(ii)	(I) Either $c = 39^{\circ} (1) 60^{\circ} > 39^{\circ}$ or equivalent (1) OR 1.58 sin 60° gives error (1) So refraction not possible or TIR [needs <i>attempt</i> to justify] (1)	[2]	
			(II) TIR at Q and at least one more instance of TIR with subsequent ecf (1)		
			As drawn with reflected ray at Q going off East of South, eventually emerging through diameter face ,with at least one more TIR event.(1)	[2]	
			air Riasy air		
	(b)	(i) (ii)	Thinner Monomode: parallel to axis (accept straight)	[1]	
		(iii)	Multimode: zig-zag paths as well (1) or some paths involve reflections Only one route for data (1) [no zig-zag routes] Each pulse [data element etc] arrives [at other end of fibre] at same time (1)	[1]	
			No overlapping of pulses (1) [even over long distances] Question 3 Total	[3] [13]	

Question			Marking details	Marks Available
4	(a)		 Any 4 x (1) from: light [energy] in discrete packets one electron ejected by one photon OR photons don't cooperate energy not accumulated [by electron] over time or emission from instant light shines intensity has no effect on <i>E</i>_{kmax} or accept intensity affects number emitted per second wave theory doesn't predict Einstein's equation or doesn't predict threshold frequency 	[4]
	<i>(b)</i>	(i)	$E_{k\text{max}} = (6.63 \text{ x } 10^{-34} \text{ x } 8.7 \text{ x } 10^{14} - 3.8 \text{ x } 10^{-19}) (1)$ $E_{k\text{max}} = 1.97 \text{ x } 10^{-19} \text{ [J] (1)}$	[2]
		(ii) (iii)	These photons eject electrons with smaller E_{kmax} (1) E_{kmax} same as previously with some explanation given (1) Correct use of $c = f\lambda$ (1) e.g. to give $\lambda_{thresh} = 523$ [nm] OB $f_{thresh} = 7.5 \times 10^{14}$ [Us]	[2]
			OR $f_{400 \text{ nm}} = 7.5 \text{ x } 10^{14} \text{ [Hz] OR } f_{700 \text{ nm}} = 4.3 \text{ x } 10^{14} \text{ [Hz]}$ Comparison of 400 [nm] with λ_{thresh} (1) or 7.5 x 10 ¹⁴ [Hz] with f_{thresh} (5.73 x 10 ¹⁴ [Hz]) or substitution of 7.5 x 10 ¹⁴ [Hz] into Einstein's equation. Conclusion : It can (1) [if reasoned]	[3]
			Question 4 Total	[11]

Question			Marking details	Marks Available
5	(a)		$E = \frac{hc}{\lambda} (1) \text{ or equivalent e.g. } E = hf \text{ and } f = \frac{c}{\lambda}$ $\lambda = 880 \text{ [nm] (1)}$	[2]
	(b)	(i) (ii)	 Photon disappears and the electron gains its energy or electron promoted from G to U 1. [Passing] photon 2. Of energy 2.26 x 10⁻¹⁹ [J] or λ = 880 [nm] or equivalent 3. Causes electron to drop [from U to G] 4. Releasing additional photon 	[1]
			 5. Identical to or in phase or polarised in the same direction or travelling in the same direction with the incident photon Award (1) mark for each of statements 1, 3 and 4 Award the 4th mark for either statement 2 or 5. 	[4]
		(iii)	Electron drops [from U to G] by itself (or randomly or without stimulation), with emission of photon	[1]
	(c)	(i) (ii)	Raising electrons to higher level or causing population inversion So more electrons in higher level than lower (1). So stimulated	[1]
		()	emission more probable than absorption (1).	[2]
			Question 5 Total	[11]

Question			Marking details	Marks Available	
6	(a)	(i) (ii)	$A = 4\pi(8.54 \times 10^8 \text{ [m]})^2 (1) [9.16 \times 10^{18} \text{ [m^2]}]$ $P = 5.67 \times 10^{-8} \text{ x area attempt x } 5790^4 (1) \text{ [W]}$ $P = 5.84 \times 10^{26} \text{ [W] and consistency ecf on slips (1)}$ [One mark to be lost for slips e.g. powers of 10, factors of 2, 4, π] Or alternative solution using Stefan's law is acceptable.	[3]	
		(1)	$I = \frac{power}{4\pi (4.1x10^{16})^2} (1)$ $I = 2.76 \times 10^8 \text{ Wm}^{-2} \text{ UNIT (1)}$ [penalty of 1 mark for slips of 10 ⁿ , 4, π etc no penalty if same slip as in (i)]	[2]	
		(iii)	$\lambda_{pmax} = \frac{2.9x10^{-3}}{5790} (1) = 5.01 \text{ x } 10^{-7} \text{ [m]} (1)$ GRAPH - Goes through origin and doesn't hit the axis (1) Peak at ~ 500 nm (Apply ecf) (1)	[4]	
			spectral intensity 0 0 500 1000 Kito 2000 Wavelength /nm		
	(b)		<i>P</i> goes up and <i>T</i> goes down and then <i>A</i> goes up (1) Because $A = \frac{P}{\sigma T^4}$ or any convincing explanation (1)	[2]	
			Question 6 Total	[11]	

Question			Marking details	Marks Available
7	(a)		Name (1) [e.g. antiproton, antineutron] Quarks (1) [e.g. $u u d$, $u d d$	[2]
	(b)	(i) (ii)	Must be neutral or lepton number conserved (1) v_e by considering charge and lepton number (1) 1^{st} mark : π^+ (1)	[2]
			 Either 2 x (1) from: y can't be a lepton [violates lepton conservation] y must be positive y can't be a baryon OR y must have u quark number [2-1] = 1 (1) and d quark number [1-2] = -1 (1) 	[3]
		(iii)	In (i) Yes – quark flavour changes or neutrino (1) In (ii) No – quark flavours conserved (1) [accept no neutrino]	[2]
			Question 7 Total	[9]