GCE Physics - PH2
Mark Scheme - January 2013

Question			Marking details	Marks Available
1	(a)	(i) (ii) (iii) (i) (ii) (iii)	$3.0[\mathrm{~cm}]$ [accept 3 cm] $v=3.0 \times 5.0(1)\left[\mathrm{cm} \mathrm{s}^{-1}\right]$ or by implication. Full ecf on λ $\begin{aligned} & t=\frac{d}{v} \operatorname{applied}(1) \\ & t=0.70 \mathrm{~s}(\text { ecf on } \lambda)(1) \end{aligned}$ OR $\begin{aligned} & d=\frac{10.5}{3.0} \\ & T=0.20[\mathrm{~s}](1) \\ & {\left[t=0.20 x \frac{10.5}{3.0}\right] t=0.70[\mathrm{~s}]} \end{aligned}$ B in phase, C not in phase (in antiphase not acceptable), D in phase irrespective of explanations. (1) Correct answer and understandable explanation or 'in phase' explained, for one of B, C or D. (1) Correct answer and understandable explanation for another of B, C, or D. (1) Diffraction Rounded and (almost) semicircular (Accept gaps of $<=3 \mathrm{~mm}$) (1) λ constant (1) (within about 30\%) Any $2 \times$ (1) from: - λ decreased [No penalty for (say) 'halved'] - less spreading - side beams Question 1 total	[1] [3] [3] [1] [2] [2] [12]

Question			Marking details	Marks Available
2	(a)	(i) (ii)	Constructive interference at P / waves arrive in phase at $P(1)$ Same path length from sources / AP = BP / no path difference (1) $\begin{aligned} & 52.2 \text { and } 50.2 \text { (1) } \\ & \lambda=2.0[\mathrm{~cm}] \text { (1) ecf on slips } \end{aligned}$ OR 56.8 and 52.8 (1) $\lambda=2.0[\mathrm{~cm}] \text { (1) ecf on slips }$	[2] [2]
		$\begin{gathered} (\mathrm{iii)} \\ (\mathrm{I}) \end{gathered}$	$\begin{aligned} & \lambda=\frac{10.0 \times 10.0}{50}(1)=2.0 \mathrm{~cm}(1) \text { UNIT } \\ & \text { OR } \lambda=\frac{10.0 \times 12.0}{50}(1)=2.4 \mathrm{~cm}(1) \text { UNIT } \end{aligned}$	[2]
	(b)	(II)	AB or SP not very small compared with D OR maxima not evenly spaced $\begin{aligned} & d=2.0 \times 10^{-6}[\mathrm{~m}](1) \text { or by implication } \\ & 3 \lambda=d^{*} \sin 72.3^{\circ}(1) \\ & {\left[d^{*} \text { needs to be related to } d, \text { even } 5.0 \times 10^{5} \text { would do }\right]} \\ & \lambda=6.35 \times 10^{-7}[\mathrm{~m}](1) \end{aligned}$	[1]
		(ii)	Up to $3^{\text {rd }}$ order visible, $1+3 \times 2$ beams seen OR diagram (1) $\frac{d}{\lambda}=3.15$ (1) so only 3 orders (1) not a freestanding mark OR $\frac{4 \lambda}{d}>1$ so only 3 orders (1) not a freestanding mark	[3] [3]
			Question 2 total	[13]

	tion		Marking details	Marks Available
3.	(a)	(i)	(I) (II) $1.58 \sin 25^{\circ}=[1.00] \sin a(1)$ or equivalent or by implication $a=42^{\circ}$ (1) (I) Either $c=39^{\circ}$ (1) $60^{\circ}>39^{\circ}$ or equivalent (1) OR $1.58 \sin 60^{\circ}$ gives error (1) So refraction not possible or TIR [needs attempt to justify] (1) (II) TIR at Q and at least one more instance of TIR with subsequent ecf (1) As drawn with reflected ray at Q going off East of South, eventually emerging through diameter face, with at least one more TIR event.(1) Thinner Monomode: parallel to axis (accept straight) Multimode: zig-zag paths as well (1) or some paths involve reflections Only one route for data (1) [no zig-zag routes] Each pulse [data element etc] arrives [at other end of fibre] at same time (1) No overlapping of pulses (1) [even over long distances] Question 3 Total	
				[2]
				[2]
		(ii)		[2]
				[2]
	(b)	(i) (ii) (iii)		[1]
				[1]
				$\begin{gathered} {[3]} \\ {[13]} \end{gathered}$

Question			Marking details	Marks Available
4	(a)	(i) (ii) (iii)	Any 4 x (1) from: - light [energy] in discrete packets - one electron ejected by one photon OR photons don't cooperate - energy not accumulated [by electron] over time or emission from instant light shines - intensity has no effect on $E_{k \max }$ or accept intensity affects number emitted per second - wave theory doesn't predict Einstein's equation or doesn't predict threshold frequency $\begin{aligned} & E_{k \max }=\left(6.63 \times 10^{-34} \times 8.7 \times 10^{14}-3.8 \times 10^{-19}\right) \\ & E_{k \max }=1.97 \times 10^{-19}[\mathrm{~J}](1) \end{aligned}$ These photons eject electrons with smaller $E_{k \max }(1)$ $E_{k \text { max }}$ same as previously with some explanation given (1) Correct use of $c=f \lambda$ (1) e.g. to give $\lambda_{\text {thresh }}=523[\mathrm{~nm}]$ OR $f_{400 \mathrm{~nm}}=7.5 \times 10^{14}[\mathrm{~Hz}]$ OR $f_{700 \mathrm{~nm}}=4.3 \times 10^{14}[\mathrm{~Hz}]$ Comparison of $400[\mathrm{~nm}]$ with $\lambda_{\text {thresh }}(1)$ or $7.5 \times 10^{14}[\mathrm{~Hz}]$ with $f_{\text {thresh }}$ $\left(5.73 \times 10^{14}[\mathrm{~Hz}]\right)$ or substitution of $7.5 \times 10^{14}[\mathrm{~Hz}]$ into Einstein's equation. Conclusion : It can (1) [if reasoned] Question 4 Total	[4] [2] [2] [3] [11]

Question			Marking details	Marks Available
5	(a)		$\begin{aligned} & E=\frac{h c}{\lambda}(1) \text { or equivalent e.g. } E=h f \text { and } f=\frac{c}{\lambda} \\ & \lambda=880[\mathrm{~nm}](1) \end{aligned}$	[2]
	(b)	(i) (ii)	Photon disappears and the electron gains its energy or electron promoted from G to U 1. [Passing] photon 2. Of energy $2.26 \times 10^{-19}[\mathrm{~J}]$ or $\lambda=880[\mathrm{~nm}]$ or equivalent 3. Causes electron to drop [from U to G] 4. Releasing additional photon 5. Identical to or in phase or polarised in the same direction or travelling in the same direction with the incident photon Award (1) mark for each of statements 1, 3 and 4 Award the $4^{\text {th }}$ mark for either statement 2 or 5 .	[1] [4]
		(iii)	Electron drops [from U to G] by itself (or randomly or without stimulation...), with emission of photon	[1]
	(c)	(i) (ii)	Raising electrons to higher level or causing population inversion So more electrons in higher level than lower (1). So stimulated emission more probable than absorption (1).	[1] [2]
			Question 5 Total	[11]

